Original Article

The preparation of V2CTx by facile hydrothermal-assisted etching processing and its performance in lithium-ion battery

Libo Wanga,*, Darong Liua, Weiwei Lianga, Qianku Hu, Xuqing Liub, Aiguo Zhoua,∗

a School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo, Henan 454000, China
b School of Materials, University of Manchester, Oxford Road, Manchester, M13 9PL UK

ARTICLE INFO

Article history:
Received 10 May 2019
Accepted 15 November 2019
Available online 5 December 2019

Keywords:
MXene
V2CTx
Hydrothermal
Lithium ion battery

ABSTRACT

In this study, high-purity V2CTx MXene was successfully synthesized by etching V2AlC with fluoride and hydrochloric acid mixed solution using a hydrothermal-assisted method. This method is more concise and effective and has a low level of danger. The morphology and structure of the V2CTx MXene was characterized by X-ray diffraction, field emission scanning electron microscopy, and X-ray photoelectron spectroscopy. The electrochemical properties were investigated as an anode material for lithium ion batteries. The results show that the prepared V2CTx had a higher purity and showed excellent electrochemical properties as an anode of lithium-ion batteries. And V2CTx prepared with different etching system can be obtained with high yield and excellent purity by changing the reactive conditions of the system. However, electrochemical performance of V2CTx MXene obtained at different etching system is quite different. V2CTx synthesized in the mixed solution of ammonium fluoride and hydrochloric acid has the best performance, which originates from more accessible active sites for ion in the enlarged interlayer distance, and the smaller impedance of V2CTx.

© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

MXenes are a new type of 2D transition metal carbides and/or nitrides nanomaterials, which was firstly synthesized by selective etching of the Al element layers from MAX phase Ti3AlC2 with hydrofluoric acid (HF) in 2011 by Naguib et al. [1]. Generally, a MXene is synthesized by exfoliating MAX phases with hydrofluoric acid, which is not safe or environmentally friendly. Therefore, the method for MXene synthesis using the solution of fluoride salt and hydrochloric acid has been developed. As the precursor of MXene, MAX phase has a chemical general formula of Mn+1AXn (n = 1,2,3…), where M is an early transition metal element, A belongs to the main groups III/IV elements, and X represents C or/and N elements [2,3]. The diversity of MAX gives the designability of composition and structure of MXene, such as Ti3C2 [4], Ti3C [5,6], V2C [7], Nb2C [8], Mo2C [9,10], Ti3CN [4,11], Nb2C2 [12], (Ti0.5Nb0.5)2C [4], and (V0.5Cr0.5)2C2 [4]. A large amount of theoretical calculations and experiments indicate that MXenes have many excellent...
physical and chemical properties and were widely used in many fields such as adsorption materials [13–15], catalytic materials [16–19], polymer reinforced materials [20–22], lubricant additives [23,24], and especially energy storage materials [25–29].

Among the MXene materials, V_2CT_x have a better performance than many other MXenes and has attracted great attention due to its novel properties. Theoretical analysis indicates that V_2CT_x MXene is a promising material as a highly active catalyst for hydrogen evolution reaction [30], uranium capture materials for nuclear waste treatment [31,32], hybrid material for the CO$_2$ and temperature responsive [33] and an energy storage material for batteries [7,34]. Taghizadeh et al. [35] and Sun et al. [36] found that V_2CT_x MXene is an ideal material for Li ion batteries (LIBs) with the theoretical capacity of up to 940 mA h g$^{-1}$, which is much higher than that of Nb$_2$C and Ti$_2$C.

Up until now, the main method of preparing V_2CT_x is to etch V_2AlC in HF solution or in the mixed solution of fluoride salts and hydrochloric acid. However, because of the high formation energies of V$_2$C from V$_2$AlC [27], the complete exfoliation of V_2AlC is difficult, and the obtained V_2CT_x tends to contain a certain amount of unreacted V_2AlC. Therefore, the transformation efficiency of V_2AlC into V_2C are still to be improved, which is of great importance for the further applications of V_2CT_x MXene.

In this paper, based on the previous studies of our work [7,37], the highly pure V_2CT_x MXene was successfully prepared by a simple hydrothermal-assisted method. Effects of the reactants, time and temperature on the yield of the product were studied in details. Meanwhile, the electrochemical performance as an anode for LIBs were also investigated. This method for MXene V_2CT_x synthesis has moderate reaction conditions and is much safer, easier and more efficient compared with other methods.

2. Experimental

2.1. Sample preparation

V_2AlC powders were pre-made by a tube furnace in Ar atmosphere and passed in 500 mesh sieves [38]. In a typical synthesis, 2 g V_2AlC powders were added into 40 mL mixed solution of 0.05 mol lithium fluoride (sodium fluoride, potassium fluoride and ammonium fluoride) and 40 mL hydrochloric acid (6 M) by magnetic stirring. The reaction mixture was sealed in a Teflon-lined stainless-steel autoclave with 100 mL capacity, kept at 90 °C for 5 days, and then allowed to cool to room temperature naturally. Black precipitates were centrifugally collected and washed several times by deionized water and absolute ethanol. Finally, the precipitates were dried under vacuum at 60 °C for 12 h. The samples obtained with lithium fluoride, sodium fluoride, potassium fluoride and ammonium fluoride were named V_2CT_x-Li, V_2CT_x-Na, V_2CT_x-K and V_2CT_x-N. To understand the influence of temperature (60, 90 and 120 °C) and time (3, 5 and 7 days) on the exfoliating process, more experiments were carried out in the same reaction system.

2.2. Measurements and observations

X-ray diffraction (XRD) pattern was obtained by D8 Advance Bruker X-Ray diffractometer equipment with Cu K$_a$ radiation. The sample was scanned over the range (2θ) 5–80° with a scanning rate of 15 min$^{-1}$ to identify the crys-

![Fig. 1](image-url)
Fig. 1 – The XRD patterns of V_2CT_x synthesized by etching V_2AlC with (a) LiF, (b) NaF, (c) KF and (d) NH$_4$F in different time at 90°.
2.3. Electrochemical characterization

The electrochemical tests were carried out in a standard CR2016 coin cell. The anode electrodes were prepared by mixing the active material, Super P, and a polyvinylidene fluoride (PVDF) binder in a mass ratio of 8:1:1 in a solution of N-methyl-2-pyrrolidinone (NMP) and stirred for several minutes. The resulting slurry was then pasted on a Cu foil and dried in a vacuum oven at 110° for 12 h. The battery was assembled in an argon-filled glove box (H₂O<1 ppm, O₂ <1 ppm) using lithium metal as the counter electrode. The electrolyte was 1 M LiPF₆ in a mixture of ethylene carbonate (EC), dimethyl carbonate (DMC), and ethylenemethyl carbonate (EMC) in a 1:1:1 volume ratio. The coin cells were tested on a XINWEI workstation, with a current density ranging from 50 mA g⁻¹ to 1000 mA g⁻¹ with a voltage range from 0.01–3.0 V. Cyclic voltammetry (CV) measurements were performed on an EQCM440 workstation (Shanghai Chenhua, China) at a scan rate of 0.2 mV s⁻¹. Electrochemical impedance spectroscopy (EIS) was measured on an electrochemical workstation (Farstat 2273, Princeton) with a frequency range from 50 mHz to 100 kHz.

3. Results and discussion

The influence of fluoride salts has an important effect on the etching process. The XRD patterns of V₂CTₓ synthesized by etching V₂AlC with different fluoride salt and time are shown in Fig. 1. The diffraction peaks with 2θ values at 13.5, 35.6, 36.2, 39.0, 41.3 and 55.5° correspond to the crystal plane (002), (100), (101), (103), and (106) of crystalline V₂AlC, respectively (PDF 29-0101). After the etching of V₂AlC with different mixture solution of fluorine salt and hydrochloric acid, the characteristic diffraction peaks of V₂AlC disappeared gradually and the characteristic diffraction peaks of V₂CTₓ appeared with the
reaction time extending. The characteristic diffraction peak with 2θ about 7.4° can be assigned to the (002) plane of MXene \(V_2\text{CT}_x \) [7,30]. From Fig. 1, it can be found that the reaction system of NaF and HCl mixture solution has the fastest etching rate than other system, the \(V_2\text{AlC} \) precursor have almost been etched in three days. While the reaction system of KF has the slowest etching rate, which needs seven days. In addition, the position of characteristic diffraction peaks of \(V_2\text{CT}_x \) of alkali system (LiF, NaF and KF) are almost identical. However, the diffraction peak of \(V_2\text{CT}_x \) prepared with NH4F has significantly shifted to a small angle. The enlarged interlayer distance means more accessible active sites for ion in the interlayer space, which will greatly enhance the performance of \(V_2\text{CT}_x \) materials in energy storage devices [39].

Fig. 2 is the FESEM images of \(V_2\text{CT}_x \) prepared with four mixture solution of LiF, NaF, KF, and NH4F with HCl in different time at a temperature of 90 °C. As shown in Fig. 2, it can be observed that the reaction is very weak in a short time of three days. Indeed, the changing of the surface morphology is weak, especially for the \(V_2\text{AlC} \) etched at KF and HCl mixture solution. With the increase of the reaction time, HF produced by the fluoride salts and hydrochloric acid increased and impel the etching process of \(V_2\text{AlC} \) to become significant and quasi-2D MXene sheets were obtained. Hence, from the figure, it can be seen that the \(V_2\text{AlC} \) in different mixture solution are almost exfoliated into the layered structure.

To understand the influence of temperature on the exfoliating process, more experiments were carried out. Fig. 3 shows the XRD patterns of the samples exfoliated with different temperature. From the XRD patterns, it can be seen that the etching reaction was very weak at low temperature of 60 °C, and the etching efficiency is very low. The intensity of diffraction peaks of \(V_2\text{AlC} \) is still strong, only a very weak diffraction peak of \(V_2\text{CT}_x \) appeared. When the temperature increased to 90 °C, \(V_2\text{CT}_x \) peaks appeared obviously and the diffraction peaks of \(V_2\text{AlC} \) almost disappeared, with the exception of \(V_2\text{AlC} \) etched at KF and HCl mixture solution, which means most \(V_2\text{AlC} \) were exfoliated to \(V_2\text{CT}_x \). If the reaction temperature was increased to 120 °C, the \(V_2\text{AlC} \) peaks all disappeared. The characterization shows that the width of XRD diffraction peak of \(V_2\text{CT}_x \) gets broader, and the diffraction peak of \(V_2\text{CT}_x \) significantly shifts to a smaller angle, meaning the enlarging of interplanar crystal spacing. However, something unknown was observed in the position of 2θ about 25°, which may be the residual aluminum fluoride or hydroxide crystals that cannot be easily washed off.

Fig. 4 is the FESEM images of \(V_2\text{CT}_x \) samples prepared at different temperatures for five days. It was found that temperature has a direct effect on the etching process. In the low temperature of 60 °C, lots of \(V_2\text{AlC} \) was still in its original form, especially in the mixture of KF and HCl system, which means the etching reaction was difficult to happen. With etching temperature increasing from 60 to 90 and/or 120 °C, it was observed that \(V_2\text{CT}_x \) MXene stacks become more separated. This illustrates that HF is easier penetrate into the layer and selectively etching the Al-layer in \(V_2\text{AlC} \), and \(V_2\text{CT}_x \) is finally generated.

In order to obtain the surface information of \(V_2\text{CT}_x \) prepared with different fluoride salt, XPS analysis were carried
out and the results are shown in Fig. 5 and the surface atomic concentration of samples are shown in Table 1. XPS shows that the main composition of these samples are V, C, O, F, and Cl. Because of adventitious carbon always co-existing with MXene, this results in higher C concentration being detected by XPS. Chlorine element on the surface of V₂CTₓ comes from the absorption of chloridion, while the Al element in the system of NH₄F and HCl may be coming from the tiny amounts of aluminum salt residue. Interestingly, it was found that the atomic concentration of fluoride salt ions has a large difference on the surface of V₂CTₓ. Li-ion has the maximum capacity, while K-ion has zero atomic concentration and Na-ion concentration is in the middle. This phenomenon shows that Li-ion is easier embedded in V₂CTₓ than Na-ion and K-ion, which may be due to the minimum ionic radius. In addition, nitrogen element was also found on the surface of V₂CTₓ, which means that NH₄⁺ had intercalated into the layers of V₂CTₓ. This led to an increase of d-spacing and reducing the Van der Waals force of V₂CTₓ layers, which will contribute to exfoliate V₂CTₓ into a single layer [40].

To better understand the chemical states of the V elements on the surface of V₂CTₓ, deconvolution of the V2p region of the high resolution XPS spectra of V₂CTₓ obtained with different fluoride salts are shown in Fig. 5. Deconvolution of the V 2p region reveals the presence of V²⁺ (~513.5 eV), V³⁺ (~514.6 eV) and V⁴⁺ (~516.6 eV). The peaks at ~513.3 eV and ~521.1 eV (V²⁺) correspond to the incomplete etching of V₂AlC MAX phase in the produced V₂CTₓ MXene, as reported in previous studies. [41-43] The peaks around ~514.6 eV (V³⁺), ~516.7 eV (V⁴⁺) and ~524.1 eV (V⁴⁺), ~524.1 eV (V⁴⁺) are attributed to the existence of a monolayer oxide/vanadium oxide mixture on the surface of V₂CTₓ MXene nanosheets. [35,42] From the high resolution XPS spectra of V2p, it can be found that the relative intensity of the V²⁺ peaks of V₂CTₓ obtained with NH₄F is weakest, which means that the method with NH₄F has a highest yield of V₂CTₓ and a minimum residual amount of incomplete etched V₂AlC MAX phase.

The charge-discharge profiles of different V₂CTₓ samples as the LiBs anode, at different cycles with a current density

Table 1 – Surface atomic concentration (%) of samples obtained from XPS.

<table>
<thead>
<tr>
<th>Samples</th>
<th>V2p</th>
<th>Cls</th>
<th>F1s</th>
<th>O1s</th>
<th>Cl2p</th>
<th>Li/Na/K/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>LiF+HCl</td>
<td>9.73</td>
<td>58.10</td>
<td>9.52</td>
<td>14.12</td>
<td>0.67</td>
<td>7.87</td>
</tr>
<tr>
<td>NaF+HCl</td>
<td>12.27</td>
<td>65.69</td>
<td>5.33</td>
<td>15.71</td>
<td>0.48</td>
<td>0.53</td>
</tr>
<tr>
<td>KF+HCl</td>
<td>10.62</td>
<td>62.86</td>
<td>6.80</td>
<td>18.99</td>
<td>0.74</td>
<td>0.00</td>
</tr>
<tr>
<td>NH₄F+HCl</td>
<td>9.49</td>
<td>58.70</td>
<td>3.54</td>
<td>24.09</td>
<td>0.53</td>
<td>1.41</td>
</tr>
</tbody>
</table>

Fig. 4 – FESEM images of V₂CTₓ prepared with four mixture solution at different temperature for five days.
of 50 mA/g in the voltage range from 0.01–3.0 V are shown in Fig. 7, respectively. The first discharge capacities of V2CTx-Li, V2CTx-Na, V2CTx-K and V2CTx-N are 1123.3, 613.6, 574.1, and 943.6 mA h g⁻¹, respectively, and the first charge capacities are 675.3, 373.4, 350.0, and 719.0 mA h g⁻¹, respectively. The first charge and discharge coulombic efficiencies of V2CTx-Li, V2CTx-Na, V2CTx-K and V2CTx-N are 60%, 61%, 61%, and 76%, respectively. The low efficiency in the first cycle was mainly because of the formation of the SEI on the surface. Among them, V2CTx-N has maximum coulombic efficiencies.
Fig. 7 – Charge–discharge profiles of different V$_2$CT$_x$ electrode at different cycles with a current density of 50 mA/g.

Table 2 – Electrochemical performance of V$_2$CT$_x$ and similar materials in other literature.

<table>
<thead>
<tr>
<th>Materials</th>
<th>Method</th>
<th>1st discharge (mAh/g)</th>
<th>Cycling performance-discharge Capacity (nth) (mAh/g)</th>
<th>Refs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>N-Nb$_2$CTx</td>
<td>Nitrogen-doped</td>
<td>380 at 0.2C</td>
<td>360 (1000h) at 0.2C</td>
<td>[50]</td>
</tr>
<tr>
<td>V$_2$CT$_x$</td>
<td>HCl + NaF-etching</td>
<td>467 at 50 mA/g</td>
<td>243 (5000h) at 50 mA/g</td>
<td>[7]</td>
</tr>
<tr>
<td>V$_2$C$_2$Ti-HF</td>
<td>HF-etching</td>
<td>164.1 at 100 mA/g</td>
<td>125 (3000h) at 100 mA/g</td>
<td>[51]</td>
</tr>
<tr>
<td>Ti$_3$C$_2$-TiO$_2$</td>
<td>Freeze-drying</td>
<td>367 at 200 mA/g</td>
<td>267 (5000h) at 200 mA/g</td>
<td>[52]</td>
</tr>
<tr>
<td>Nb$_2$C$_3$Tx</td>
<td>HF-etching</td>
<td>231.4 at 100 mA/g</td>
<td>69 (1000h) at 100 mA/g</td>
<td>[53]</td>
</tr>
<tr>
<td>Mo$_2$CTx</td>
<td>HCl + LiF-etching</td>
<td>323 at 50 mA/g</td>
<td>274.85 (3000h) at 50 mA/g</td>
<td>[54]</td>
</tr>
<tr>
<td>Ti$_3$C$_2$Tx</td>
<td>HF-etching</td>
<td>335.5 at 50 mA/g</td>
<td>70 (10000h) at 1000 mA/g</td>
<td>[55]</td>
</tr>
<tr>
<td>rGO</td>
<td>Freeze-dried</td>
<td>267 at 66.7 mA/g</td>
<td>208.26 (1000h) at 66.7 mA/g</td>
<td>[56]</td>
</tr>
<tr>
<td>V$_2$CT$_x$-N</td>
<td>Hydrothermal etching</td>
<td>943.6 at 50 mA/g</td>
<td>233 (500h) at 1000 mA/g</td>
<td>This work</td>
</tr>
</tbody>
</table>

Fig. 8(a–d) shows the typical cyclic voltammetry (CV) plots of lithium storage behavior of the different V$_2$CT$_x$ electrodes, with an electrochemical window of 3.0 V–0.01 V at a scan rate of 0.2 mV s$^{-1}$. As shown in Fig. 8a–d, the CV shape curve of V$_2$CT$_x$ is similar to that reported in the literature [44]. Cyclic voltammetry curves of V$_2$CT$_x$ do not exhibit a distinct reduction peak. The main weakly reduction peak of the V$_2$CT$_x$ electrode is about 1.1 V in the first lithiation process, and then disappears in the following Li-ion intercalation process. This could mainly be due to the formation of SEI companion on the electrode surface to trapping of Li$^+$ on the sheets of V$_2$CT$_x$ [45]. In the cycle for the oxidation process, a peak at about 2.0 V may be caused by Li ion extraction from the V$_2$CT$_x$ layers. The cycling performances of MXene V$_2$CT$_x$ samples electrodes at different current densities were tested, and the results are shown in Fig. 8e. In the first ten cycles at a current density of 50 mA g$^{-1}$, the capacities of all four electrodes were unstable, and this was due to the formation of the SEI film [46]. From the first 60 cycles, it can be seen that the V$_2$CT$_x$-N electrode has a high capacity at a different rate and that the capacity has no obvious attenuation. In the latter 50 cycles, when the current density was reduced back to 1000 mA g$^{-1}$, the cell maintained a stable capacity, and the efficiency remained at almost 100%. In all of the cycles, V$_2$CT$_x$-N had a higher time capacity than V$_2$CT$_x$-Li, V$_2$CT$_x$-Na, and V$_2$CT$_x$-K. The increase of the capacity of V$_2$CT$_x$-N materials in LIBs may be due to the enlarged interlayer distance (as shown in XRD and SEM), which can provide more accessible active sites for ion in the interlayer space. By contrast, the electrochemical results of V$_2$CT$_x$-N are better than other similar materials in some previous reports in Table 2.

Fig. 8f is the electrochemical impedance spectroscopy of the V$_2$CT$_x$ electrodes. From the spectroscopy, it can be found that V$_2$CT$_x$ obtained from NH$_4$F and HCl etching system has
the smallest semicircular diameter in the high frequency region, meaning a better charge transfer efficiency in the four electrodes [47]. Moreover, V\textsubscript{2}CT\textsubscript{x}-Li, V\textsubscript{2}CT\textsubscript{x}-Na and V\textsubscript{2}CT\textsubscript{x}-K had the maximum impedance. The straight line in the low frequency region was due to the diffusion of Li+ on the electrode [48,49]. V\textsubscript{2}CT\textsubscript{x}-N sample has the smaller diffusion resistance in low frequency, meaning the better diffusion of Li ion from electrolyte. The straight line in low frequency region of V\textsubscript{2}CT\textsubscript{x}-K has a maximum value and slope among four samples. This indicated that the V\textsubscript{2}CT\textsubscript{x}-K sample has high impedance, corresponding to the cycling performances of MXene V\textsubscript{2}CT\textsubscript{x} samples electrodes at different current densities.

4. Conclusion

In summary, this paper provides a simple and efficient hydrothermal-assisted etching method to prepare V\textsubscript{2}CT\textsubscript{x} MXene. From analysis of aforementioned results, reaction temperature and time are important factors in influencing the fabrication of V\textsubscript{2}CT\textsubscript{x} MXene. Compared to previous literature [7,34], this method can highly improve the purity and yield of V\textsubscript{2}CT\textsubscript{x} sample. When used as an anode for Li-ion batteries, the as prepared V\textsubscript{2}CT\textsubscript{x} MXene present excellent cycling capability and good reversibility. Among the samples, V\textsubscript{2}CT\textsubscript{x} etching by ammonium fluoride and hydrochloric acid mixed solution can
provide a large electrochemically active surface and a rapid channel for ion and electron transfer with lower resistance, and shows higher specific capacitance with the capacity of 233 mAh g\(^{-1}\) at the current of 1000 mAh g\(^{-1}\). Hence, the present study expands on the efficient preparation of \(V_2CT_x\) MXene as an electrode material for high performance Li-ion batteries.

Conflict of interest

We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work, there is no professional or other personal interest of any nature or kind in any product, service and/or company that could be construed as influencing the position presented in, or the review of, the manuscript entitled, "The preparation of \(V_2CT_x\) by facile hydrothermal-assisted etching processing and its performance in lithium-ion battery".

Acknowledgement

This work was supported by National Natural Science Foundation of China (51772077), Natural Science Foundation of Henan Province (182300410228), Project of science and technology tackling key of Henan (172102210284), Program for Innovative Research Team (in Science and Technology) in the University of Henan Province (No. 19IRTSTHN027).

References

Oxidation

Dong JH, Lin Y, Zong HW, Yang HB. Hierarchical LiFe5O8@PPy core-shell nanocomposites as electrode materials for supercapacitors. Appl Surf Sci 2019;470:1043–52.

Byeon A, Hatter CB, Park JH, Ahn CW, Gogotsi Y, Lee JW. Molybdenum oxide/carbon composites derived from the CO2 oxidation of Mo2CTx (MXene) for lithium ion battery anodes. Electrochim Acta 2017;258:97–89.
