Journal of Materials Research and Technology Journal of Materials Research and Technology
J Mater Res Technol 2013;2:18-23 DOI: 10.1016/j.jmrt.2013.03.005
Original Article
Processing and characterization of Al2O3-yttrium aluminum garnet powders
Eduardo de Souza Limaa,, , Luis Henrique Leme Louroa, Ricardo de Freitas Cabralb, José B. de Camposc, Roberto Ribeiro de Avillezd, Célio Albano da Costae
a Instituto Militar de Engenharia (IME), Rio de Janeiro, RJ, Brazil
b Universidade Estadual da Zona Oeste (UEZO), Rio de Janeiro, RJ, Brazil
c Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ, Brazil
d Materials Engineering Department, Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio/DEMa), Rio de Janeiro, RJ, Brazil
e Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia, Universidade Federal do Rio de Janeiro (COPPE/UFRJ), Rio de Janeiro, RJ, Brazil
Received 19 August 2012, Accepted 16 October 2012
Abstract

Recent studies have shown that Y3Al5O12 (YAG - yttrium aluminum garnet) and Al2O3 composites are chemically stable at high temperatures when produced by unidirectional solidification. In this method, the material is slowly solidified immediately after passing through a melting zone. However, this complexity procession has encouraged other routes. Among them, the usual sintering of Al2O3 and Y2O3 (or YAG) powders. In this present work, Al2O3 and YAG powders were produced using a high-energy milling of Al2O3 and Y2O3 precursor powders followed by a thermal treatment step. These powders were characterized using quantitative XRD techniques, BET, SEM and TEM. The complete YAG formation was obtained at 1,400°C.

Keywords
Al2O3-yttrium aluminum garnet, Composite, Milling, Powders
This article is only available in PDF
References
[1]
S. Ochiai,T. Ueda,K. Sato
Deformation and fracture behavior of an Al2O3/YAG composite from room temperature to 2023 K
Compos Sci Technol., 61 (2001), pp. 2117-2128
[2]
Y. Waku,N. Nakagawa,T. Wakamoto,H. Otsubo,K. Shimizu,Y. Kohtoku
High temperature strength and thermal stability of unidirectionally solidified Al2O3/YAG eutectic composite
J Mater Sci., 33 (1998), pp. 1217-1225
[3]
P. Palmero,A. Simone,C. Esnouf,G. Fantozzi,L. Montannaro
Comparison among different sintering routes for preparing alumina-YAG nanocomposites
J Eur Ceram Soc., 26 (2006), pp. 941-947
[4]
W. Li,L. Gao
Processing, microstructure and mechanical properties of 25 vol% YAG-Al2O3 nanocomposites
Nanostruct Mater., 11 (1999), pp. 1073-1080
[5]
T.A. Parthasarathy,T. Mah,L.E. Matson
Processing, structure and properties of alumina-YAG eutectic composites
J Ceram Process Res., 5 (2004), pp. 380-390
[6]
S. Ochiai,Y. Sakai
Analytical modeling of stress-strain behavior at 1873 K of alumina/YAG composite compressed parallel and perpendicular to the solidification direction
Compos Sci Technol., (2006), pp. 1-8
[7]
J. Pastor,Y. Llorca,A. Salazar
Mechanical properties of melt- grown alumina-yttrium aluminum garnet eutectics up to 1900 K
J Am Ceram Soc., 88 (2005), pp. 1488-1495
[8]
S. Ochiai,Y. Sakai
Fracture characteristics of Al2O3/YAG composite at room temperature to 2023 K
J Eur Ceram Soc., 25 (2005), pp. 1241-1249
[9]
Y. Mizutani,H. Yasuda,I. Ohnaka,N. Maeda,Y. Waku
Coupled growth of unidirectionally solidified Al2O3–YAG eutectic ceramics
J Cryst Growth., 244 (2002), pp. 384-392
[10]
T. Isobe,M. Omori,S. Uchida,T. Sato,T. Hirai
Consolidation of Al2O3-Y3Al5O12 (YAG) eutectic powder prepared from induction-melted solid and strength at high temperature
J Eur Ceram Soc., 22 (2002), pp. 2621-2625
[11]
H. Duong,J. Wolfenstine
Creep-behavior of fine-grained 2-phase Al2O3-Y3Al5O12 materials
Mater Sci Eng A., 172 (1993), pp. 173-179
[12]
P. Palmero,L. Montanaro
Thermal and mechanical-induced phase transformations during YAG and alumina-YAG syntheses
J Therm Anal Calorim., 88 (2007), pp. 261-267
[13]
R.A. Young
The rietveld method
Oxford Press, (1995)pp. 5-21
[14]
R.W. Cheary,A. Coelho
A fundamental parameters approach to X-ray line-profile fitting
J Appl Crystallogr., 25 (1992), pp. 109-121
[15]
A.Y. Neiman,E.V. Tkachenko
Conditions and macromechanism of the solid-phase synthesis of yttrium aluminates
Russ. J Inorg Chem., 25 (1980), pp. 2340-2345
[16]
E.S. Lima,L.H.L. Louro,C.R.C. Costa,J.B. de Campos,C.A. Costa
Microstructure of Al2O3/YAG eutectic composite
Brazilian Journal of Morphological Sciences, Supplement., (2005), pp. 316
[17]
L.B. Kong,J. Ma,H. Huang
Low temperature formation of yttrium aluminum garnet from oxides via a high-energy ball milling process
Mater Lett., 56 (2002), pp. 344-348
[18]
Lima ES. Sinterização do SiC com adição do compósito Al2O3-YAG [DC thesis]. Brazil: Instituto Militar de Engenharia; 2006.
[19]
L. Wen,X. Sun,Z. Xiu
Synthesis of nanocrystalline yttria powder and fabrication of transparent YAG ceramics
J Eur Ceram Soc., 24 (2004), pp. 2681-2688
[20]
J.G. Li,T. Ikegami,J.H. Lee,T. Mori,Y. Yajima
Co-precipitation synthesis and sintering of yttrium aluminum garnet (YAG) powders: The effect of precipitant
J Eur Ceram Soc., 20 (2000), pp. 2395-2405
[21]
T. Tachiwaki,M. Yoshinaka,K. Hirota,T. Ikegami,O. Yamaguchi
Novel synthesis of Y3Al5O12 (YAG) leading to transparent ceramics
Sol St Comm., 119 (2001), pp. 603-606
[22]
X. Li,H. Liu,J. Wang,X. Zhang,H. Cui
Preparation and properties of YAG nano-sized powder from different precipitating agent
Opt Mater., 25 (2004), pp. 407-412
[23]
P. Palmero,C. Esnouf
Phase and microstructural evolution of yttrium-doped nanocrystalline alumina: A contribution of advanced microscopy techniques
J Eur Ceram Soc., 31 (2011), pp. 507-516
[24]
C.W. Won,H.H. Nersisyan,H.I. Won
Efficient solid-state route for the preparation of spherical YAG: Ce phosphor particles
J Alloys Compd., 509 (2011), pp. 2621-2626
[25]
S.A. Hassanzadeh-Tabrizi,E. Taheri-Nassaj
Compressibility and sinterability of Al2O3 – YAG nanocomposite powder synthesized by an aqueous sol – gel method
J Alloys Compd., 506 (2010), pp. 640-644
Copyright © 2013. Brazilian Metallurgical, Materials and Mining Association
J Mater Res Technol 2013;2:18-23 DOI: 10.1016/j.jmrt.2013.03.005