Journal Information
Vol. 2. Num. 1.
Pages 1-86 (January - March 2013)
Share
Share
Download PDF
More article options
Vol. 2. Num. 1.
Pages 1-86 (January - March 2013)
Original Article
DOI: 10.1016/j.jmrt.2013.03.005
Open Access
Processing and characterization of Al2O3-yttrium aluminum garnet powders
Visits
10980
Eduardo de Souza Limaa,
Corresponding author
eslima@hotmail.com

Corresponding author.
, Luis Henrique Leme Louroa, Ricardo de Freitas Cabralb, José B. de Camposc, Roberto Ribeiro de Avillezd, Célio Albano da Costae
a Instituto Militar de Engenharia (IME), Rio de Janeiro, RJ, Brazil
b Universidade Estadual da Zona Oeste (UEZO), Rio de Janeiro, RJ, Brazil
c Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ, Brazil
d Materials Engineering Department, Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio/DEMa), Rio de Janeiro, RJ, Brazil
e Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia, Universidade Federal do Rio de Janeiro (COPPE/UFRJ), Rio de Janeiro, RJ, Brazil
This item has received
10980
Visits

Under a Creative Commons license
Article information
Abstract

Recent studies have shown that Y3Al5O12 (YAG - yttrium aluminum garnet) and Al2O3 composites are chemically stable at high temperatures when produced by unidirectional solidification. In this method, the material is slowly solidified immediately after passing through a melting zone. However, this complexity procession has encouraged other routes. Among them, the usual sintering of Al2O3 and Y2O3 (or YAG) powders. In this present work, Al2O3 and YAG powders were produced using a high-energy milling of Al2O3 and Y2O3 precursor powders followed by a thermal treatment step. These powders were characterized using quantitative XRD techniques, BET, SEM and TEM. The complete YAG formation was obtained at 1,400°C.

Keywords:
Al2O3-yttrium aluminum garnet
Composite
Milling
Powders
Full text is only aviable in PDF
References
[1]
S. Ochiai, T. Ueda, K. Sato, et al.
Deformation and fracture behavior of an Al2O3/YAG composite from room temperature to 2023 K.
Compos Sci Technol., 61 (2001), pp. 2117-2128
[2]
Y. Waku, N. Nakagawa, T. Wakamoto, H. Otsubo, K. Shimizu, Y. Kohtoku.
High temperature strength and thermal stability of unidirectionally solidified Al2O3/YAG eutectic composite.
J Mater Sci., 33 (1998), pp. 1217-1225
[3]
P. Palmero, A. Simone, C. Esnouf, G. Fantozzi, L. Montannaro.
Comparison among different sintering routes for preparing alumina-YAG nanocomposites.
J Eur Ceram Soc., 26 (2006), pp. 941-947
[4]
W. Li, L. Gao.
Processing, microstructure and mechanical properties of 25 vol% YAG-Al2O3 nanocomposites.
Nanostruct Mater., 11 (1999), pp. 1073-1080
[5]
T.A. Parthasarathy, T. Mah, L.E. Matson.
Processing, structure and properties of alumina-YAG eutectic composites.
J Ceram Process Res., 5 (2004), pp. 380-390
[6]
S. Ochiai, Y. Sakai.
Analytical modeling of stress-strain behavior at 1873 K of alumina/YAG composite compressed parallel and perpendicular to the solidification direction.
Compos Sci Technol., (2006), pp. 1-8
[7]
J. Pastor, Y. Llorca, A. Salazar.
Mechanical properties of melt- grown alumina-yttrium aluminum garnet eutectics up to 1900 K.
J Am Ceram Soc., 88 (2005), pp. 1488-1495
[8]
S. Ochiai, Y. Sakai.
Fracture characteristics of Al2O3/YAG composite at room temperature to 2023 K.
J Eur Ceram Soc., 25 (2005), pp. 1241-1249
[9]
Y. Mizutani, H. Yasuda, I. Ohnaka, N. Maeda, Y. Waku.
Coupled growth of unidirectionally solidified Al2O3–YAG eutectic ceramics.
J Cryst Growth., 244 (2002), pp. 384-392
[10]
T. Isobe, M. Omori, S. Uchida, T. Sato, T. Hirai.
Consolidation of Al2O3-Y3Al5O12 (YAG) eutectic powder prepared from induction-melted solid and strength at high temperature.
J Eur Ceram Soc., 22 (2002), pp. 2621-2625
[11]
H. Duong, J. Wolfenstine.
Creep-behavior of fine-grained 2-phase Al2O3-Y3Al5O12 materials.
Mater Sci Eng A., 172 (1993), pp. 173-179
[12]
P. Palmero, L. Montanaro.
Thermal and mechanical-induced phase transformations during YAG and alumina-YAG syntheses.
J Therm Anal Calorim., 88 (2007), pp. 261-267
[13]
R.A. Young.
The rietveld method.
Oxford Press, (1995), pp. 5-21
[14]
R.W. Cheary, A. Coelho.
A fundamental parameters approach to X-ray line-profile fitting.
J Appl Crystallogr., 25 (1992), pp. 109-121
[15]
A.Y. Neiman, E.V. Tkachenko.
Conditions and macromechanism of the solid-phase synthesis of yttrium aluminates.
Russ. J Inorg Chem., 25 (1980), pp. 2340-2345
[16]
E.S. Lima, L.H.L. Louro, C.R.C. Costa, J.B. de Campos, C.A. Costa.
Microstructure of Al2O3/YAG eutectic composite.
Brazilian Journal of Morphological Sciences, Supplement., (2005), pp. 316
[17]
L.B. Kong, J. Ma, H. Huang.
Low temperature formation of yttrium aluminum garnet from oxides via a high-energy ball milling process.
Mater Lett., 56 (2002), pp. 344-348
[18]
Lima ES. Sinterização do SiC com adição do compósito Al2O3-YAG [DC thesis]. Brazil: Instituto Militar de Engenharia; 2006.
[19]
L. Wen, X. Sun, Z. Xiu.
Synthesis of nanocrystalline yttria powder and fabrication of transparent YAG ceramics.
J Eur Ceram Soc., 24 (2004), pp. 2681-2688
[20]
J.G. Li, T. Ikegami, J.H. Lee, T. Mori, Y. Yajima.
Co-precipitation synthesis and sintering of yttrium aluminum garnet (YAG) powders: The effect of precipitant.
J Eur Ceram Soc., 20 (2000), pp. 2395-2405
[21]
T. Tachiwaki, M. Yoshinaka, K. Hirota, T. Ikegami, O. Yamaguchi.
Novel synthesis of Y3Al5O12 (YAG) leading to transparent ceramics.
Sol St Comm., 119 (2001), pp. 603-606
[22]
X. Li, H. Liu, J. Wang, X. Zhang, H. Cui.
Preparation and properties of YAG nano-sized powder from different precipitating agent.
Opt Mater., 25 (2004), pp. 407-412
[23]
P. Palmero, C. Esnouf.
Phase and microstructural evolution of yttrium-doped nanocrystalline alumina: A contribution of advanced microscopy techniques.
J Eur Ceram Soc., 31 (2011), pp. 507-516
[24]
C.W. Won, H.H. Nersisyan, H.I. Won.
Efficient solid-state route for the preparation of spherical YAG: Ce phosphor particles.
J Alloys Compd., 509 (2011), pp. 2621-2626
[25]
S.A. Hassanzadeh-Tabrizi, E. Taheri-Nassaj.
Compressibility and sinterability of Al2O3 – YAG nanocomposite powder synthesized by an aqueous sol – gel method.
J Alloys Compd., 506 (2010), pp. 640-644
Copyright © 2013. Brazilian Metallurgical, Materials and Mining Association
Journal of Materials Research and Technology

Subscribe to our newsletter

Article options
Tools
Cookies policy
To improve our services and products, we use cookies (own or third parties authorized) to show advertising related to client preferences through the analyses of navigation customer behavior. Continuing navigation will be considered as acceptance of this use. You can change the settings or obtain more information by clicking here.