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a  b s  t  r  a  c  t

Mg-Zn-RE  alloys  reinforced  with  quasicrystals  have  been  investigated  extensively  because

they  show  excellent  balance  in  mechanical  properties.  Here,  we  perform  deformation

and  annealing  for  Mg-1.50Zn-0.25Gd  (at.%)  alloy  at  various  temperatures,  aimed  to  gain

nanoscale  precipitates.  We  “nd  that  after  the  room-temperature  compression,  the  non-basal

dislocation,  stacking  fault  and  twining  are  identi“ed  in  the  as-deformed  samples,  offering

clear  evidence  that  these  deformation  mechanisms  can  accommodate  room-temperature

deformation.  We  also  perform  systematic  transmission  electron  microscopy  observations

of  the  precipitates  in  both  the  as-deformed  and  as-annealed  samples.  The  results  identify

the  formation  of  a  large  amount  of  secondary-phase  precipitates,  I-phase  and  MgZn 2, when

annealed  at  200 � C, and  precipitation  of  a  small  amount  of  W-phase  when  annealed  at  400 � C.

©  2017 Brazilian  Metallurgical,  Materials  and  Mining  Association.  Published  by  Elsevier

Editora  Ltda.  This  is  an  open  access  article  under  the  CC BY-NC-ND  license  (http://

creativecommons.org/licenses/by-nc-nd/4.0/ ).

1.  Introduction

In  recent  years,  research  and  development  of  Mg  alloys  have
been  greatly  promoted  by  the  lightweight  requirement  in  the
automotive  and  aerospace  industries  [1…3]. Among  these  Mg
alloys,  Mg-Zn-RE  (RE: rear  earth  element)  alloys  have  been
widely  studied  because  of  their  excellent  balance  in  mechan-
ical  properties  [4…8]. To  uncover  the  precipitation  behavior  of
this  alloy  system,  many  studies  have  been  done  in  the  last  two
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years,  such  as  metastable  phase  formation  [9],  phase  equilibria
and  transformations  [10], precipitation  phase  [11…13] and  slip
systems  activation  [13]. It  has  been  reported  and  con“rmed
that  Zn/Y  (in  wt.%)  ratios  of  I-phase  (Mg3Zn 6Y)  and  W-phase
(Mg3Zn 3Y2) are  4.38 and  1.10, respectively  [14].  When  the  Zn/Y
ratio  exceeds  4.38, the  requirement  to  utterly  form  I-phase  can
be  satis“ed.  However,  when  the  Zn/Y  ratio  is  between  1.10
and  4.38, the  quantity  of  Zn  is  not  high  enough  to  meet  the
requirement  to  completely  form  I-phase,  resulting  in  partial
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formation  of  W-phase  [14,15]. Since  the  I-phase  is  superior  to
W-phase  in  grain  re“nement  and  strengthening  effect  [14], we
previously  designed  Mg-Zn-Gd  alloys  with  Zn/Gd  (at.%)  ratio  of
� 6 to  obtain  I-phase  [16], and  probed  systemically  secondary
phases  in  these  alloys  [17…21]. To  further  improve  mechani-
cal  properties,  a  large  amount  of  nanoscale  I-phase,  which  is
distributed  dispersively  in  � -Mg  matrix,  is  highly  preferred.

Thermal  mechanical  processing  is  usually  applied  to
quasicrystal-reinforced  Mg  alloys  to  enhance  nanoscale  I-
phase  precipitation  and  grain  re“nement  [22…26],  e.g. hot
compression  [19,27], extrusion  [28…31],  rolling  [25,30,32],
equal  channel  angular  extrusion  (ECAE) [26,33…35] and  cyclic
extrusion  and  compression  (CEC) [36…39].  Although  the  hot
deformation  behavior  of  Mg  alloys  reinforced  with  I-phase
has  been  investigated  widely,  their  room-temperature  defor-
mation  behavior  is  scarcely  studied,  yet  signi“cant,  because
these  structural  materials  are  usually  employed  at  ambient
temperature.

The  T10  treatment  (i.e.  heat  treatment  after  deformation)
can  be  used  to  further  improve  strength  of  the  alloys  by
promoting  secondary-phase  precipitates  [6].  On  one  hand,
nanoscale  I-phase  can  precipitate  during  annealing  [20,40].
On  the  other  hand,  such  T10  treatment  is  bene“cial  for  sec-
ondary  phase  precipitation  by  promoting  diffusion  of  alloying
elements  [6]. These  lead  us  to  think  if  there  can  precipitate
large  amount  of  dispersive  nanoscale  I-phase  in  the  � -Mg
matrix  after  T10  treatment.  In  addition,  Kim  et  al.  [40]  investi-
gated  the  precipitation  behavior  under  various  heat  treatment
conditions  in  both  the  as-cast  and  hot  rolled  Mg-Zn-Y  alloys
reinforced  with  quasicrystal.  They  proposed  that  the  MgZn 2

phase  precipitates  in  the  � -Mg  matrix  during  annealing  at
190 � C and  the  polygon-shaped  I-phase  precipitates  are  mainly
formed  during  annealing  at  350…420� C. These  indicate  that  the
applied  annealing  temperature  after  deformation  is  also  very
important  for  determining  the  species  of  the  secondary  phase
precipitation.

In  this  study,  we  select  the  Mg-1.50Zn-0.25Gd  (at.%)
alloys  reinforced  with  I-phase  for  room-temperature  compres-
sion.  To  gain  insights  into  the  room-temperature  behavior
and  precipitation  mechanisms  after  the  T10  treatment,
the  microstructure  of  the  samples  after  deformation  and
with/without  annealing,  especially  the  secondary  phase
precipitates  were  characterized  by  transmission  electron
microscopy  (TEM).

2.  Experimental

Mg-1.50Zn-0.25Gd  (at.%)  alloy  was  fabricated  by  traditional
gravity  casting  [16,41]. The  as-cast  samples  were  then
machined  into  cylindrical  rods  of  10 mm  in  diameter  and
15 mm  in  height  for  room-temperature  compression.  The
compression  was  conducted  at  ambient  with  an  initial
strain  rate  of  0.001 sŠ1 using  the  Zwick/RoellZ020  testing
machine  until  cracking.  A  portion  of  the  deformed  samples
was  annealed  at  200 � C and  400 � C. Transmission  electron
microscopy  (TEM)  samples  were  obtained  by  cutting  the
samples  near  the  crack  plane  of  the  compressed  samples.
Specimens  for  TEM  observations  were  prepared  by  grinding,
dimpling  and  argon  ion-beam  thinning.

Fig.  1  … Secondary  phase  precipitates  and  dislocations
observed  by  TEM  for  the  sample  after  room-temperature
compression.  (a) Needle-like  secondary  phase  precipitated
on  (0001)  plane  of  � -Mg  matrix.  (b) TEM  image  obtained
under  two-beam  condition.  (c) Diffraction  pattern.

3.  Results  and  discussion

3.1.  Secondary phase and  defects in  the  compressed
sample

Fig.  1a  shows  TEM  image  of  secondary  phase  precipitates.  The
needle-like  secondary  phase  has  the  same  morphology  as  the
as-cast  sample,  and  is  con“rmed  to  be  Mg4Zn 7 phase  precip-
itated  on  the  basal  planes  [17,19,20].  This  secondary  phase
hence  undergoes  no  change  in  room-temperature  compres-
sion.  Liu  et  al.  [42]  reported  that  non-basal  dislocations  are
activated  during  deformation  at  elevated  temperature  for  Mg-
Zn-Gd  alloys  reinforced  with  quasicrystal.  Fig.  1b  and  c  shows
TEM  image  and  diffraction  pattern  taken  at  two-beam  diffrac-
tion  with  g =  0002. The  dislocation  contrast  is  not  extinguished
for  (0002) re”ection,  indicating  that  these  dislocations  are  of
type  (a +  c). Therefore,  in  addition  to  the  basal  slip,  non-basal
slip  can  also  accommodate  room-temperature  deformation
for  Mg-Zn-Gd  alloys  reinforced  with  quasicrystal.

Some  stacking  faults  can  also  be  identi“ed  in  the  com-
pressed  sample,  as  shown  in  Fig.  2.  Fig.  2a  shows  TEM  image
of  the  stacking  faults  parallel  to  the  (0001) of  � -Mg  matrix,  and
Fig.  2b  shows  the  corresponding  diffraction  patterns  with  inci-
dent  electron  beam  parallel  to  [11…20] zone  axis.  The  streaking
along  g =  0001 direction  suggests  that  the  stacking  faults  are
basal  (Fig.  2b)  [43,44].  These  results  indicate  that  stacking
faults  can  also  accommodate  room  temperature  deformation
for  Mg-Zn-Gd  alloys  reinforced  with  quasicrystal.

Fig.  3 shows  TEM  image  of  twins  in  the  deformed  sample.
Fig.  3a  shows  the  bright  “led  image,  from  which  many  dis-
location  traces  can  be  identi“ed.  Fig.  3b  shows  selected  area
diffraction  pattern  (SADP) of  the  grain  1 marked  in  Fig.  3a.  The
zone  axis  can  be  identi“ed  to  be  [11…20] of  � -Mg  matrix.  Fig.  3c
shows  SADP of  the  interfacial  zone  between  grains  1 and  2.
The  grain  2 can  be  obtained  by  rotating  grain  1  by  � 29� along
[11…20] zone  axis.  Fig.  3d  and  e shows  SADP of  the  interface
zone  between  grains  2 and  3 and  between  grains  3  and  4. The
misorientation  angle  is  determined  to  be  � 86� between  grains
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Fig.  2  … Stacking-faults  in  the  sample  after
room-temperature  compression:  (a) morphology  image  and
(b) corresponding  diffraction  pattern.

2 and  3 and  also  between  grains  3 and  4. The  misorientation
angle  between  grain  1  and  3 is  thus  determined  to  be  � 57� .
Fig.  3f  shows  SADP of  the  grain  4, from  which  the  grains  2
and  4 have  the  same  orientation  and  the  misorientation  angle
between  grains  1 and  4 is  � 29� .

To  extract  atomic  information,  we  conduct  HRTEM  imaging
of  the  twinning  zone,  as  shown  in  Fig.  4. The  misorientation
angle  between  grains  1 and  4 is  determined  to  be  � 29� (Fig.  4a
and  b)  and  the  misorientation  angle  in  Fig.  4c  and  d  is  deter-
mined  to  be  � 57� and  86� , respectively,  con“rming  further  the
diffraction  analysis  in  Fig.  3.  By  looking  at  the  atomic  plane  at
the  interface  zone,  one  can  see that  the  tension  twinning  inter-
face  is  coherent  (Fig.  4d),  while  semi-coherent  or  incoherent
for  compression  and  double  twinning  interface  (Fig.  4b  and  c).
The  common  twinning  (e.g. tension,  compression  and  double
twining)  can,  therefore,  also  accommodate  room-temperature
deformation  for  Mg-Zn-Gd  alloys  reinforced  with  quasicrystal.

Fig.  4  … HRTEM  image  of  twin  boundaries.  (a) Low
magni“cation  TEM  image  showing  the  twinning  zone.
HRTEM  image  showing  (b) contraction  twinning  boundary,
(c) double  twinning  boundary,  and  (d)  tension  twinning
boundary.

3.2.  Precipitation  after  deformation  and  annealing

In  our  previous  study,  we  found  that  different  types  of  sec-
ondary  phase  are  precipitated  and  distributed  by  partition  in
grains  due  to  the  composition  segregation  of  the  solute  allo-
ying  elements  [20]. The  concentration  of  the  alloying  elements
in  the  region  near  grain  boundary  is  higher  than  that  in  the
middle  of  grain.  Here,  we  also  investigate  the  precipitation
behavior  in  different  areas.  Fig.  5  shows  TEM  images  of  the
sample  after  compression  and  annealing  at  200 � C for  10  h.
Fig.  5a  shows  the  morphology  of  the  precipitates  in  the  middle

Fig.  3  … Twins  in  the  sample  after  room-temperature  compression.  (a) TEM  image.  (b) SADP  of  the  grain  1  in  (a). (c) SADP  of
the  grain  1  and  2  in  (a). (d)  SADP  of  the  grain  2  and  3  in  (a). (e) SADP  of  the  grain  3  and  4  in  (a). (f) SADP  of  the  grain  4  in  (a).
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Fig.  5  … TEM  images  showing  secondary  phase  precipitates
in  the  sample  after  compression  and  annealing  at  200 � C for
10  h:  (a) small  precipitates,  (b) relatively  large  precipitates.
SADP  of  the  particle  (c) A  and  (d)  B shown  in  (b). (e) SADP  of
the  particle  B obtained  by  tilting  about  30 � with  respect  to
the  pattern  in  (d).

of  the  grain,  which  is  needle-like  or  ellipsoidal.  Compared  to
Fig.  1a,  the  size  of  the  needle-like  secondary  phase  is  much
smaller  and  the  ellipsoidal  secondary  phase  is  newly  formed.
The  size  of  these  newly  formed  secondary  phase  ranges  from
10 to  20 nm.  Fig.  5b  shows  precipitates  of  the  region  near  grain
boundary.  As  compared  to  Fig.  5a,  the  size  of  the  secondary
phase  is  larger  and  no  needle-like  secondary  phase  is  found.
We  select  the  newly  formed  particle  A  to  further  conduct  SADP
analysis,  as  shown  in  Fig.  5c,  which  is  a  typical  diffraction  pat-
tern  for  I-phase.  The  zone  axis  is  5-fold.  The  trace  of  defects
can  also  be  identi“ed  in  this  particle.  In  our  previous  study
[21], we  have  characterized  defects  in  I-phase  particles  for  the
Mg-Zn-Gd  alloy  after  deformation  at  elevated  temperature.
This  result  may  be  further  con“rmed  that  defects  can  also
be  formed  during  deformation  at  room  temperature.  Fig.  5d
shows  SADP of  the  newly  formed  particle  B. The  shape  of  the
particle  B is  approximately  rod-like.  After  tilting  by  � 30� ,  we
obtain  another  SADP, as  shown  in  Fig.  5e.  By  analyzing  the  two
SADPs, we  conclude  that  the  particle  B is  MgZn 2 and  the  zone
axis  is  [100]  in  Fig.  5d  and  [210]  in  Fig.  5e.

Fig.  6 shows  TEM  image  of  annealed  sample  at  400 � C.
From  the  low  magni“cation  image  in  Fig.  6a,  the  needle-like
secondary  phase  is  con“rmed  to  be  also  dispersed  and  only
a  few  secondary-phase  precipitates  are  in  the  � -Mg  matrix.
Fig.  6b  shows  an  enlarged  image  of  a  particle  with  size  of
� 400 nm.  Fig.  6c  shows  a  SADP of  the  particle  shown  in  Fig.  5b,
from  which  this  secondary  phase  can  be  con“rmed  to  be  W-
phase  (face-centered  cubic  structure,  a =  0.768 nm)  [45].  The
as-cast  alloy  annealed  at  400 � C for  8 h  has  also  been  char-
acterized  in  our  precious  study  [46], verifying  that  crystalline

Fig.  6  … TEM  image  of  the  secondary  phase  precipitates  for
the  sample  after  compression  and  annealing  at  400 � C for
10  h.  (a) Low  magni“cation  TEM  image  showing  the
precipitates;  (b) magni“ed  TEM  image  highlighting  a
precipitate.  (c) SADP  of  the  particle  in  (b).

secondary  phase  can  be  precipitated  after  heat  treatment.
Hence,  deformation  and  annealing  would  retard  precipitation
of  the  secondary  phase,  possibly  leading  to  solid  solution  of
the  secondary  phase.  Therefore,  a  large  amount  of  secondary-
phase  precipitates,  including  I-phase  and  MgZn 2, are  formed
during  annealing  at  200 � C, and  a  few  W-phase  precipitates  are
formed  when  annealing  at  400 � C.

3.3.  Deformation  mechanism

Most  of  the  wrought  Mg  alloys  have  a  poor  ductility  due
to  their  hexagonal  close-packed  structure,  which  allows  an
activation  of  only  two  independent  basal  slips  at  room  tem-
perature  [47].  Since  only  two  independent  basal  slip  systems
are  available  in  Mg,  other  non-basal  slip  and/or  twinning  sys-
tems  must  be  activated  to  satisfy  the  geometrical  requirement
of  “ve  independent  deformation  components  for  homo-
geneous  deformation  without  crack  formation  [47]. These
alloys  has  an  extremely  low  critical  resolved  shear  stress  of
basal  slip  (� 0.6 MPa) as  compared  to  that  of  non-basal  slip
(>38 MPa) [48…50],  tension  twinning  (2.0…2.8 MPa), and  contrac-
tion  twinning  (76…153 MPa) [50].  Hence,  during  deformation,
a  large  amount  of  basal  slips  and  tension  twinning  will  be
activated  and  Mg  alloys  exhibit  a  relatively  low  strength  (ten-
sile  yield  strength:  � 100…250 MPa  for  commercial  casting  Mg
alloys  [43,51]) and  limited  ductility  (elongation:  2…8% [43,51]).
Actually,  twining  represents  an  important  deformation  mech-
anism  for  Mg  alloys  [52…57]. The  most  commonly  observed
three  typical  twinning  are  tension,  compression  and  double
twinning.  Tensile  twinning  reorients  around  [11…20] zone  axis
by  � 89� [50,58…62],  while  for  contraction  twinning  and  dou-
ble  twinning  the  rotating  angle  is  56� ±  5� [50,61,63,64]  and
38� ±  5� [63…65],  respectively.  In  addition,  it  has  been  reported
that  Gd  lowers  the  stacking-fault  energy  of  Mg  [44]. Stacking
fault  is  usually  formed  by  the  dissociation  of  a  full  dislocation
into  two  partial  dislocations  on  the  basal  plane  during  defor-
mation  [43]. The  partial  dislocation  can  then  be  separated  by
applying  stress  to  form  a  wide  planar  stacking  fault  ribbon  [66]
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(Fig.  2a). Jian  et  al.  [43]  proposed  that  a  high  density  of  stack-
ing  faults  is  formed  after  deformation  with  large  strain.  In  this
study,  the  as-deformed  sample  was  obtained  by  compression
until  crack,  and  the  TEM  sample  was  cutting  near  the  crack
plane.  Hence,  the  strain  is  strong  enough  to  form  stacking
faults  and  twins.  Actually,  the  non-basal  dislocations  (Fig.  1),
stacking  faults  (Fig.  2) and  twining  (Fig.  3) have  been  found  in
the  as-deformed  samples,  indicating  that  these  deformation
mechanisms  work  effectively.

3.4.  Precipitation  behavior

According  to  the  binary  alloy  phase  diagram  of  Mg-Zn  [67],
there  are  “ve  types  of  Mg-Zn  phases:  Mg7Zn 3 (or  Mg51Zn 20),
MgZn  (or  Mg12Zn 13), Mg2Zn 3 (or  Mg4Zn 7), MgZn 2 and  Mg2Zn 11,
and  the  phase  transition  temperature  is  340 � C, 347 � C, 416 � C,
� 590 � C and  381 � C, respectively.  Among  them,  MgZn 2 is  the
most  thermally  stable  phase.  The  most  common  ternary  sec-
ondary  phases  are  I-phase  and  W-phase.  For  the  I-phase,  the
phase  transition  temperature  is  437 � C (I-phase  partly  trans-
formed)  and  470 � C (I-phase  and  � -Mg  eutectic  transition),
while  for  W-phase,  it  is  � 510 � C [16,68].

When  the  annealing  temperature  is  200 � C, all  these  Mg-
Zn  binary  phases  and  Mg-Zn-Gd  ternary  phases  are  thermally
stable.  However,  TEM  observation  indicates  that  the  newly
formed  precipitates  are  MgZn 2 and  I-phase.  Kim  et  al.  [40]
probed  the  precipitates  in  a  ternary  Mg-Zn-Y  alloy,  and  also
found  that  low-temperature  precipitate  is  MgZn 2 phase,  which
is  also  consistent  with  that  obtained  in  the  binary  Mg-Zn  alloy
[69]. The  difference  is,  however,  that  we  “nd  I-phase  precipi-
tates  for  Mg-Zn-Gd  alloy,  while  there  is  no  I-phase  precipitates
for  Mg-Zn-Y  alloy.  In  our  previous  study  on  the  precipitation
behavior  for  as-cast  Mg-Zn-Gd  alloy  annealing  at  350 � C [20],
we  “nd  that  the  formation  of  I-phase  requires  a  high  con-
centration  of  alloying  elements,  otherwise  the  MgZn 2 will  be
precipitated  in  � -Mg  matrix.  Hence,  in  this  study,  the  newly
formed  I-phase,  which  precipitates  in  � -Mg  matrix,  may  be  due
to  the  high  concentration  of  alloying  elements.  In  addition,
deformation  also  introduces  a  large  amount  of  defects  into
the  alloys,  which  bene“t  the  diffusion  of  alloying  elements
[19,70…72]. The  diffusion  coef“cient  of  Gd  in  � -Mg  matrix  is
enhanced,  which  may  be  another  reason  for  the  precipitation
of  I-phase  in  � -Mg  matrix.

When  the  annealing  temperature  increases  to  400 � C, only
four  types  of  secondary  phases  (Mg2Zn 3, MgZn 2,  I-  and  W-
phase)  have  a  higher  transition  temperature  than  annealing
temperature.  Hence,  only  these  four  secondary  phases  are
likely  to  be  newly  formed.  On  the  other  hand,  with  the  increase
of  temperature,  the  solid  solution  ability  of  the  alloying  ele-
ments  increases  accordingly.  The  solubility  limits  of  the  Zn
and  Gd  in  � -Mg  matrix  is  � 6.2 wt.%  at  � 340 � C and  23.49 wt.%
at  � 548 � C, respectively  [67,73].  In  addition,  solubility  of  Zn  and
Gd  in  � -Mg  matrix  at  400 � C is  � 5.5 wt.%  and  11  wt.%,  respec-
tively  [67]. The  concentration  of  Zn  and  Gd  in  our  studied
alloy  is  3.88 wt.%  and  1.56 wt.%,  respectively.  Because  the  sol-
ubility  is  higher  than  the  concentration,  it  is  likely  that  the
secondary  phase  decomposes  and  is  then  dissolved  into  � -
Mg  matrix  by  annealing  at  400 � C. Especially  for  Mg2Zn 3 and
I-phase,  the  phase  transition  temperatures  are  only  a  little
higher  than  the  annealing  temperature.  Although  both  MgZn 2

and  W-phase  are  thermally  stable  at  this  annealing  tempera-
ture,  maybe  W-phase  is  easier  to  form  due  to  the  addition  of
Gd.  The  best  proof  is  that  W-phase  formed  instead  of  MgZn 2 in
as-casted  Mg-Zn-Gd  alloys  [16]. It  may  also  have  a  very  small
amount  of  MgZn 2 phase,  which  is  undetected,  precipitated
in  the  samples  after  deformation  and  annealing.  Therefore,
in  this  study,  the  TEM  observation  reveals  that  the  needle-
like  Mg4Zn 7 (Mg2Zn 3) phase  was  disappears  and  only  a  small
number  of  W-phase  is  found.

4.  Conclusions

We  have  conducted  room-temperature  compression  of  Mg-
1.50Zn-0.25Gd  (at.%)  alloys  reinforced  with  I-phase  and
performed  a  systematic  TEM  analysis  of  the  microstructure
of  the  alloys,  especially  the  secondary-phase  precipitates.
We  “nd  that  during  the  room-temperature  deformation,  the
non-basal  slipping,  stacking  faults  and  twining  are  activated
to  accommodate  the  deformation  strain  and  there  is  no
secondary-phase  transition.  When  annealed  at  200 � C after
deformation,  the  needle-like  Mg4Zn 7 phase  is  dispersed  and
a  large  amount  of  I-phase  and  MgZn 2 phase  are  precipitated.
However,  when  annealed  at  400 � C after  deformation,  only  a
small  amount  of  W-phase  is  found  in  the  � -Mg  matrix,  though
the  needle-like  Mg4Zn 7 phase  is  also  dispersed.
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