Journal Information
Vol. 2. Num. 1.
Pages 1-86 (January - March 2013)
Share
Share
Download PDF
More article options
Vol. 2. Num. 1.
Pages 1-86 (January - March 2013)
Review Article
DOI: 10.1016/j.jmrt.2013.03.004
Open Access
Cubic boron nitride competing with diamond as a superhard engineering material – an overview
Visits
11787
Sergio Neves Monteiroa,
Corresponding author
sergio.neves@ig.com.br

Corresponding author.
, Ana Lúcia Diegues Skuryb, Márcia Giardinieri de Azevedob, Guerold Sergueevitch Bobrovnitchiib
a Instituto Militar de Engenharia (IME), Materials Science Department, Rio de Janeiro, RJ, Brazil
b Universidade Federal do Norte Fluminense, Laboratory of Superhard Materials (UENF/LAMAV), Campos dos Goytacazes, RJ, Brazil
This item has received
11787
Visits

Under a Creative Commons license
Article information
Abstract

Since the synthesis of the boron nitride in its cubic crystallographic structure, cBN, a material with exceptionally high hardness and special properties was developed for technical engineering applications. For practical use, cBN is, after diamond, the second known hardest material and is today being increasingly used as cutting and drilling tools in substitution for diamond-based tools owing to superior thermal stability and chemical inertness. In this study, the advances in the use of the cBN competing with diamond as a superhard industrial tooling for petroleum extraction, automobile manufacture and other engineering applications, was reviewed. The properties of both single crystals and polycrystalline cBN in the form of composites and thin films were assessed to characterize the possibilities of a next generation of superhard materials to replace diamond in tool and other technological devices.

Keywords:
Cubic boron nitride
Superhard materials
Industrial tools
Engineering applications
Full text is only aviable in PDF
References
[1]
J.E. Field.
The properties of natural and synthetic diamond.
Academic Press, (1992),
[2]
H.O. Pierson.
Handbook of carbon, graphite, diamonds and fullerenes.
William Andrew Pub, (1994),
[3]
F.P. Bubdy, H.T. Hall, H.M. Strong, R.H. Wentorf.
Man-made diamonds.
Nature., 176 (1955), pp. 51-55
[4]
H.T. Hall.
The synthesis of diamond.
J Chem Educ., 38 (1961), pp. 484-488
[5]
J. Qian, C. Pantea, J. Huang, T.W. Zerda, Y. Zhao.
Graphitization of diamond powders of different sizes at high pressure-high temperature.
Carbon., 42 (2004), pp. 2691-2697
[6]
R.T. Coelho, S. Yamada, D.K. Aspinwall, M.L.H. Wise.
The application of polycrystalline diamond (PCD) tool materials when drilling and reaming aluminum-based alloys including MMC.
Int J Mach Tools Manufact., 35 (1995), pp. 761-767
[7]
R.H. Wentorf.
The formation of Gore Mountain [New York] garnet and hornblende at high temperature and pressure.
American J. Sci., 254 (1956), pp. 413-419
[8]
R.H. Wentorf.
Cubic form of boron nitride.
J Chem Phys., 26 (1957), pp. 956
[9]
R.H. Wentorf.
Synthesis of the cubic form of boron nitride.
J Chem Phys., 34 (1961), pp. 809-812
[10]
F.O. Bundy, R.H. Wentorf.
Direct transformation of hexagonal boron nitride to denser forms.
J Chem Phys., 38 (1963), pp. 1144-1149
[11]
Process for making polycrystalline cubic boron nitride and product therefrom. US Patent 3078232, 1963.
[12]
R.H. Wentorf, A.J. DeLai.
Produit compact formé par plusieurs cristaux de nitrure de bore cubique et procédé pour sa fabrication.
France Patent, 1302244 (1961),
[13]
Wentorf RH, Delai AJ. Cubic boron nitride compact and method for its production. US Patent 3233988, 1966.
[14]
G. Will, G. Nover, J. Von der Gonna.
New experimental results on the phase diagram of boron nitride.
J Solid State Chem., 154 (2000), pp. 280-285
[15]
Wentorf RH, Rocco W. Catalyst systems for synthesis of cubic boron nitride. CA Patent 982541, 1972.
[16]
Hara A, Jazn S. Sintered compact for machining tool and the method for produce the same. US Patent 4334928, 1982.
[17]
Nakay N, Kono J. Compact for use in tool and the method for produce the same. US Patent 4389465, 1983.
[18]
Wentorf RH. Abrasive material and preparation thereof. US Patent 2947617, 1960.
[19]
Growth of large cubic form of boron nitride crystals. UK Patent 1317716, 1965.
[20]
Sirota NN. Method for converting hexagonal boron nitride to a new structure. UK Patent 1317716, 1973.
[21]
Corrigan FR. Method for producing large cubic boron nitride particles. UK Patent 2002333, 1978.
[22]
A.V. Urdjumov, A.N. Pilyankevich.
Phase transformation of carbon and boron nitrides (in Russian).
Naukova Dumka, (1979),
[23]
S.A. Bozhko, A.I. Ignatucha.
Structure of cubic boron nitride double layer discs (in Russian).
J. Superhard Mater., 4 (1985), pp. 28-32
[24]
S.A. Bozhko, N.P. Bezhenar.
Sintering of cubic boron nitride with aluminum (in Russian).
J. Superhard Mater., 5 (1986), pp. 14-17
[25]
N.V. Novikov, Synthesis.
sintering and properties of boron cubic nitride (in Russian).
Naukova Dumka, (1993),
[26]
A.A. Sulzhenko, Synthesis.
sintering and properties of cubic boron nitride (in Russian).
Naukova Dumka, (1993),
[27]
E.I. Grischenko.
The turning of nickel alloys with the tool of cubic boron nitride (in Russian).
Naukova Dumka, (1993),
[28]
A.V. Bochko, O.I. Zaporozhets.
Elastic constants and modulus of elasticity of cubic and wurzitic boron nitride (in Russian).
Powder Metall Met Ceram., 34 (1996), pp. 417-423
[29]
Bochko AV, Bobrovnitchii GS. Superhard composites based on cubic boron nitride In: Proceedings of the Carbon Technology Joint Conference ADC/FCT; 2001; Hanover, MD 21076: NASA/CP – 2001-210948, 2001. v. 1. p. 590-4.
[30]
K. Kudaka, H. Konno, T. Matuca.
Some factors affecting crystal growth of cubic boron nitride.
J Chem Soc Japan., 89 (1966), pp. 365-369
[31]
H. Saito, M. Ushio, S. Nagao.
Synthesis of cubic boron nitride.
J Japanese Ceramic Soc., 78 (1970), pp. 1-8
[32]
Wakatsuk AK, Synthesis of polycrystalline cubic boron nitride. In: Proceedings of the 4th International Conference on High Pressure; 1974; Kyoto, Japan. p. 1-8.
[33]
Ishinose H. Synthesis of polycrystalline boron nitride. In: Proceedings of the 4th International Conference on High Pressure; 1974; Kyoto, Japan. p. 10-7.
[34]
T. Kobayashi, K. Susa, S. Taniguchi.
New catalysts for the high pressure synthesis of cubic BN.
Mat Res Bull., 10 (1975), pp. 1231-1235
[35]
A. Okada.
Cubic boron nitride today.
Kikay Gindznits., 24 (1976), pp. 41-46
[36]
H.A. Tabuchi, S. Yazn.
Performance of Sumiboron BN 2000. Sumimoto Elect.
Techn Review., 8 (1978), pp. 57-65
[37]
O. Fukunaga, T. Endo, M. Iwta.
Growth pressure-temperature region of cBN in the system BN-Mg.
J Mater Sci., 14 (1979), pp. 1375-1380
[38]
T. Kobayashi.
High pressure syntheses of cubic BN using water, urea, and boric acid catalysts.
J Chem Phys., 70 (1979), pp. 5898-5905
[39]
T. Endo, O. Fukunaga, M. Iwata.
The synthesis of cBN using Ca3B2N4.
J Mater Sci., 16 (1981), pp. 2227-2232
[40]
T. Sato, H. Hiraoka, T. Endo, O. Fukunaga, M. Iwata.
Effect of oxygen on the growth of cubic boron nitride using Mg3N, as catalyst.
J Mater Sci., 16 (1981), pp. 1829-1834
[41]
Y.P. Zhou, X.W. Yan, S.L. Du, X.F. Ma, S.J. Cui, W. Zhao.
Conversion behavior of various hexagonal boron nitride to cubic boron nitride.
Chin J High Pressure Phys., 9 (1995), pp. 5-13
[42]
Y.K. Chou, C.J. Evans.
Cubic boron nitride tool wear in interrupted hard cutting.
Wear., 225–9 (1999), pp. 234-245
[43]
X.C. Wang, X.P. Jia, T.C. Zhang, et al.
cBN synthesis in the system of BN-M and bonded water.
Diamond and Related Mater., 12 (2003), pp. 57-60
[44]
Y. Du, Z. Su, D. Yang, et al.
Synthesis of black cBN single crystal in hBN-Li3N-B system.
Matter Letters., 61 (2007), pp. 3409-3412
[45]
Y. Du, X. Ji, X. Yang, et al.
The influence of hVB crystallinity and additive lithium hydride on cBN synthesis in Li3N-hBN system.
Diamond and Related Mater., 16 (2007), pp. 1475-1478
[46]
J.Y. Zhang, Q. Yu, S. Pang, S. Meng, T. Wang, J. Hu.
Development an application of polycrystal cubic boron nitride cutting tool material.
Key Eng Mater., 375-6 (2008), pp. 168-171
[47]
W. Guo, X. Jia, W.L. Guo, H.W. Xu, J. Shang, H.A. Ma.
Effects of additive LIF on the synthesis of cBN in the system Li3N-hBN at HPHT.
Diamond and Related Mater., 19 (2010), pp. 1296-1299
[48]
G.S. Bobrovinichii, A.L.D. Skury, S.N. Monteiro, M.G. Azevedo.
Sintering of cubic boron nitride using titanium-based binder.
Mater Sci Forum., 727-728 (2012), pp. 446-449
[49]
G.S. Bobrovinichii, A.L.D. Skury, S.N. Monteiro.
Hard metal matrix composites reinforced with cubic boron nitride.
Mater Sci Forum., 727-728 (2012), pp. 310-313
[50]
G.S. Bobrovinichii, A.L.D. Skury, S.N. Monteiro, M.G. Azevedo, L. Silva.
Boron nitride ceramic composite obtained by high pressure and high temperature sintering.
Mater Sci Forum., 727-728 (2012), pp. 736-739
[51]
Method of producing cubic boron nitride.UK Patent 1316045,1982.
[52]
Bundy FP. Method for converting hexagonal boron nitride to a new structure. US Patent 3212852.
[53]
V.L. Solozhenki, V.Z. Turkewich, W.B. Holzapfel.
On nucleation of cubic boron nitride in the BN-MgB2 system.
J Phys Chem B., 103 (1999), pp. 8137-8140
[54]
V.Z. Turkewich.
Phase diagrams and synthesis of cubic boron nitride.
J Phys: Condens Matter., 14 (2002), pp. 10963-10968
[55]
S.K. Singhal, J. Von der Gonna, G. Nover, H.J. Meurer, B.P. Singh.
Synthesis of cubic boron nitride at reduced pressures in the presence of Co[(NH3)6]Cl3 and NH4F.
Diamond and Related Mater., 14 (2005), pp. 1389-1394
[56]
V.B. Shipilo, O.V. Ignatenko, N.G. Anichenko, I.I. Azarko.
Crystallization kinetics of cubic boron nitride in the B-N-Mg-H-F system.
Inorganic Mater., 41 (2005), pp. 713-715
[57]
Novikov NV, Shulzhenko AA. Superhard polycrystalline materials for cutting tools. In: VII Internationale Pulvermetallurgische Tagung. 1991, Dresden, Germany. p. 10-5.
[58]
S.A. Bozhko, N.P. Bzhenar.
Sintering of cBN (in Russian).
Superhard Matter., 4 (1985), pp. 28-33
[59]
Synthesis of cubic boron nitride. France Patent 2508429, 1985.
[60]
Processing of cBN powder by high pressure sintering. Japan Patent 5624701, 1989.
[61]
Preparation of solid aggregates of high density boron nitride crystals. France Patent 2455632, 1996.
[62]
P. Klimczyc, E. Benko, K. Lawniczac, et al.
Cubic boron nitride-Ti/TiN composites: hardness and phase equilibrium as a function of temperature.
J Alloys and Compounds., 382 (2004), pp. 195-205
[63]
Jiang W, Reed B, Renegan H, Goforth C, Malshe AP. Cubic boron nitride coated cutting tools for advanced machining. Finer Pointes – CVD Diamond and cBN Coating Fall Meeting. 2009, Columbus, USA. p. 23-30.
[64]
T.C. Zhang, W.L. Guo, G.T. Zou.
The effect of temperature on the optical properties of cubic boron nitride.
Chin J High Pressure Phys., 4 (1990), pp. 270-276
[65]
O. Mishima, J. Tanaka, S. Yamaoka, O. Fukunaga.
High-temperature cubic boron nitride P-N junction diode made at high pressure.
Science ., 238 (1987), pp. 181-183
[66]
O. Mishima, K. Era, J. Tanaka, S. Yamaoka.
Ultraviolet lightemitting diode of a cubic boron nitride pn junction made at high pressure.
Appl Phys Lett., 53 (1988), pp. 962-964
[67]
R. Riedel.
Materials harder than diamond?.
Adv Mater., 4 (1992), pp. 759-761
Copyright © 2013. Brazilian Metallurgical, Materials and Mining Association
Journal of Materials Research and Technology

Subscribe to our newsletter

Article options
Tools
Cookies policy
To improve our services and products, we use cookies (own or third parties authorized) to show advertising related to client preferences through the analyses of navigation customer behavior. Continuing navigation will be considered as acceptance of this use. You can change the settings or obtain more information by clicking here.